

Application News

No. A538

Spectrophotometric Analysis

Analysis of Mineral Water Hardness and Iron and Zinc Content of Supplements

Water contains trace amounts of calcium and magnesium and their content is expressed as water hardness. Hardness refers to the amounts of calcium ions and magnesium ions in water converted to an equivalent amount of calcium carbonate (CaCO₃), and is expressed in terms of milligrams per one liter of water. The total amount of both hardness types (calcium and magnesium) is referred to as total hardness.^[1] Generally, a total hardness of 100 mg/L or less is referred to as soft water and 100 mg/L or more is referred to as hard water.^[2] While most water in Japan is soft and well suited to tea and soup stock, hard water is suited to supplementing mineral intake. Presently, the daily use of supplements to make up for insufficient intake of nutrients etc., has become common place. In the food sector, a variety of products are being produced to enable intake of the required amounts of such nutrients.

Using Kyoritsu Chemical-Check Lab., Corp.'s PACKTEST series kit with the water analysis program for the UV-1280 UV-VIS spectrometer allows measurement of 22 types and 39 items, including total hardness and iron/zinc content.

This article investigates the total hardness of commercially-available mineral waters as well as the hardness of tap water using the water analysis program for the UV-1280. We also introduce the measurement results of iron and zinc content in a number of supplements.

K. Sobue

Total Hardness of Mineral Water

Fig. 1 shows the UV-1280 and Kyoritsu Chemical-Check Lab's PACKTEST series kit. We prepared seven commercially-available mineral water products and performed measurement using the conditions listed in Table 1. The water analysis program features a user definition function that allows users to create their own measurement items. In this instance, we added a total hardness item for each sample as shown in Fig. 2. Table 2 compares the results of measuring each sample three times against the values stated on each bottle. We can see that four of the samples are soft water and the remaining three are hard water. In addition to the differentiation into soft and hard water, the results show that differences exist in total hardness across all samples.

Fig. 1 UV-1280 and PACKTEST

Table 1 Measurement Conditions							
Instrument	: UV-1280 Water analysis program PACKTEST Total Hardness						
Measurement item	: Total hardness						
User Defined 1	[tem List 2] - 봄						
1.TH_V	Total Hardness_V						
2.TH_CG	Total Hardness_CG						
3.TH_IT	Total Hardness_IT						
4.TH_A	Total Hardness_A						
5.TH_S	Total Hardness_S						
6.TH E	Total Hardness_E						
7.TH_C	Total Hardness_C						
8.TH_Tap	Total Hardness_TapWater						
Input item No.	∢⊳: Page						
Result	SetParam ItemMgt.						

Fig. 2 Example of User-Defined Items in the Water Analysis Program

Table 2 Comparison of Stated Values and Measurement Results
of Total Hardness of Commercially-Available Mineral Water

Sample	Value stated	Measurement result (mg/L)			
	(mg/L)	1st	2nd	3rd	
TH_V	60	64.97	60.30	59.66	
TH_CG	38	28.54	30.01	29.59	
TH_IT	40.3	41.40	39.90	41.71	
TH_A	Approx. 20	21.31	22.87	22.35	
TH_S	253	236*1	244 ^{*1}	225*1	
TH_E	304	304*1	296*1	285*1	
TH_C	1468	1313* ²	1354* ²	1296*2	

*1 Sample diluted by a factor of five with pure water

*2 Sample diluted by a factor of 20 with pure water

Variation in Total Hardness of Tap Water

Fig. 3 shows the results of measuring the total hardness of tap water over a period of about two weeks (April 4 to April 14, 2017). The trend graph makes obvious the variation in the total hardness of the tap water. The total hardness is generally in the 30 mg/L range and is stable.

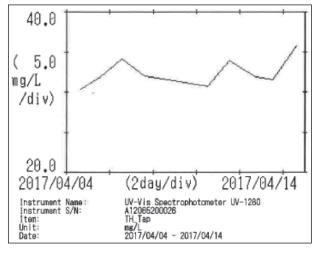


Fig. 3 Daily Total Hardness of Tap Water

Iron and Zinc Content of Supplements

Three commercially-available supplements that contain iron and zinc were analyzed using the conditions listed in Table 3. The water analysis program displays the measurement procedure on the screen, allowing users to analyze target components by simply following the onscreen instructions. The measurement range of iron and zinc is 0.1 to 8.0 mg/L and 0.03 to 0.4 mg/L respectively. Table 4 compares the values stated on each supplement package with the results obtained by measuring each supplement after dissolving them in 100 mL of 1 % hydrochloric acid and diluting the solution. While low values were obtained for some supplements since they did not completely dissolve in the pure water, results generally matched the stated values.

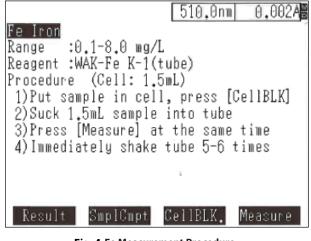


Fig. 4 Fe Measurement Procedure

Table 3 Measurement Conditions				
Instrument	: UV-1280			
	Water analysis program			
	PACKTEST Iron, Zinc (Low Range)			
Measurement item	: Iron, zinc (low concentration)			

Table 4 Comparison of Stated Values and Measurement Results of Iron and Zinc in Commercially-Available Supplements

Measurement item	Sample	Value stated	Measured value (converted to unit of stated value)		
		Stated	1st	2nd	3rd
Fe	NM*1	3 mg	2.94 (2.94 mg)	3.06 (3.06 mg)	3.15 (3.15 mg
	F*1	1.2 mg	0.944 (0.94 mg)	0.861 (0.86 mg)	0.907 (0.91 mg
	A*2	18 mg	1.15 (11.5 mg)	1.31 (13.1 mg)	1.27 (12.7 mg
Zn(D)	NM ^{*3}	10 mg	0.109 (10.9 mg)	0.122 (12.2 mg)	0.092 (9.2 mg)
	F*2	3.75 mg	0.363 (3.63 mg)	0.353 (3.53 mg)	0.391 (3.91 mg
	A*3	14 mg	0.143 (14.3 mg)	0.163 (16.3 mg)	0.137 (13.7 mg

*1 Sample diluted by a factor of 10 with pure water

*2 Sample diluted by a factor of 100 with pure water

*3 Sample diluted by a factor of 1000 with pure water

Summary

Using the water analysis program for the UV-1280 and Kyoritsu Chemical-Check Lab's PACKTEST series kit, we were able to confirm the total hardness of commerciallyavailable mineral water and the variation in total hardness of tap water. The user definition function in the water analysis program allowed adding of measurement items and the trend function enabled viewing of daily variations at a glance. In addition, by diluting the iron and zinc contained in supplements, we were able to easily measure the iron and zinc content of those supplements.

References

- [1] Kyoritsu Chemical-Check Lab PACKTEST Total Hardness http://kyoritsu-lab.co.jp/seihin/list/packtest/th.html
- [2] The Mineral Water Association of Japan website http://minekyo.net/

First Edition: Jul. 2017

Shimadzu Corporation

www.shimadzu.com/an/

For Research Use Only. Not for use in diagnostic procedures.

This publication may contain references to products that are not available in your country. Please contact us to check the availability of these products in your country.

The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu. Company names, product/service names and logos used in this publication are trademarks and trade names of Shimadzu Corporation or its affiliates, whether or not they are used with trademark symbol "TM" or "®". Third-party trademarks and trade names may be used in this publication to refer to either the entities or their products/services. Shimadzu disclaims any proprietary interest in trademarks and trade names other than its own.

The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice.